Facial Expression Recognition Based on the Belief Theory: Comparison with Different Classifiers
نویسندگان
چکیده
This paper presents a system for classifying facial expressions based on a data fusion process relying on the Belief Theory (BeT). Four expressions are considered: joy, surprise, disgust as well as neutral. The proposed system is able to take into account intrinsic doubt about emotion in the recognition process and to handle the fact that each person has his/her own maximal intensity of displaying a particular facial expression. To demonstrate the suitability of our approach for facial expression classification, we compare it with two other standard approaches: the Bayesian Theory (BaT) and the Hidden Markov Models (HMM). The three classification systems use characteristic distances measuring the deformations of facial skeletons. These skeletons result from a contour segmentation of facial permanent features (mouth, eyes and eyebrows). The performances of the classification systems are tested on the Hammal-Caplier database [1] and it is shown that the BeT classifier outperforms both the BaT and HMM classifiers for the considered application.
منابع مشابه
Facial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملA comprehensive experimental comparison of the aggregation techniques for face recognition
In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005